首届国家最高科学技术奖获得者,让全世界重

北京白癜风哪家最好 http://www.xxzywj.com/index.html

著名数学家、中国科学院院士、首届国家最高科学技术奖获得者吴文俊(-)先生在拓扑学、数学机械化和中国数学史研究领域做出了划时代的成就,为我国的现代数学事业和数学史学科发展做出了卓越的贡献。上世纪70年代,吴文俊先生将研究兴趣转向中国古代数学。他以敏锐的目光和深邃的思想把中国传统数学的特点概括为构造性与机械化,不仅将其成功地应用于数学机械化新领域,成为古为今用、自主创新的典范,而且也开创和引领了继李俨(—)、钱宝琮(—)之后中国数学史研究的新局面。

自年吴先生发表第一篇数学史论文后,他在报刊和杂志上陆续发表了多篇数学史重要论文,并且在多部数学史著作的序言中阐明自己对中国传统数学及其研究方法的认识,逐渐形成了独到的具有鲜明时代特色、影响深远的数学史认识论和方法论,吴先生在逼近花甲之年,以战斗的姿态和科学的热情,古为今用,开创了数学机械化的崭新领域;同时以战斗的姿态,亲自深入数学史研究,以揭示历史本来面目为己任,为弘扬中国古代数学文化作出了巨大贡献。

他从历史上的数学思想方法中获得借鉴和教益,以历史借鉴和教益来促进现实的数学研究,这是数学史研究的重要意义和价值之所在。吴文俊的数学史研究自始至终都自觉地贯彻了“古为今用”的原则,这是他学术研究的鲜明特点,其数学机械化理论的创立就是在“古为今用”的原则指导下将数学史研究成果应用于现代数学研究而取得的卓越成就。他的“数学机械化”思想与早先尝试几何定理的机器证明,主要有三个方面的历史来源:

一是中国传统数学中的几何代数化。“解方程”在中国古代数学中有着悠久的传统。《九章算术》中就有用“开方术”和“方程术”解各种应用问题。《九章算术》的“方程术”在宋元时期被发展为“四元术”,即解多元代数方程组的消元算法。“几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻。吴文俊在解多元高次方程组方面取得了重要突破,他创造的“三角化整序法”是目前唯一完整的非线性多项式方程组消元解法,在国际数学界被称为“吴方法”,而“吴方法”的思想恰恰来自中国古代数学的启示,特别是受到元代数学家朱世杰(—)的“四元术”的启示。

  二是笛卡尔《几何学》的“通用数学”与机械化思想。古希腊欧几里得几何的证明模式是从定义和公理出发,按照逻辑规则逐步演绎推断,几何证明过程中没有通用的证明法则,只能一题一证,根据不同的问题构思不同证明的方法。笛卡尔(ReneDescartes,—)的《几何学》却对希腊演绎模式进行了批判,企图以代数改造几何,给出了不同于《几何原本》的证明模式,开创了可用计算进行几何定理证明的新局面,从而将演绎几何引向解析几何。

三是希尔伯特的《几何基础》中的机械化定理。希尔伯特(—)的《几何基础》将几何学引进更抽象的公理化系统,不仅将欧几里得《几何原本》的公理系统加以改良,而且把几何学从一种具体的特定模型上升为抽象、普遍的数学理论,但是,吴文俊在该书中发现,希尔伯特明言:同一类几何定理可以用统一的方法一起证明,不必逐一进行证明。而且其中含有一条连希尔伯特本人可能都未意识到的机械化定理:初等几何中只涉及从属于平行关系的定理,可以机械化证明。如果引入适当的坐标,其统一的证明方法则可以通过算法来实现。《几何基础》一直以来都被奉为现代公理化方法的经典,甚至与《几何原本》一样成为公理化的代名词,然而其中却包含算法化的思想。吴文俊正是从中获得了几何定理机械化证明的思想借鉴。

这充分反映出吴文俊对历史典籍考察分析的敏锐眼光和思想深度。吴文俊创立数学机械化理论是当代研究与历史借鉴完美结合而取得重大发明创造的范例。其从数学史研究到创立和完善数学机械化理论的过程及其中的一些细节,是值得数学史与数学工作者认真研究和探讨的课题。




转载请注明:http://www.aierlanlan.com/rzfs/7711.html